A conserved RNA pseudoknot in a putative molecular switch domain of the 3'-untranslated region of coronaviruses is only marginally stable.

نویسندگان

  • Suzanne N Stammler
  • Song Cao
  • Shi-Jie Chen
  • David P Giedroc
چکیده

The 3'-untranslated region (UTR) of the group 2 coronavirus mouse hepatitis virus (MHV) genome contains a predicted bulged stem-loop (designated P0ab), a conserved cis-acting pseudoknot (PK), and a more distal stem-loop (designated P2). Base-pairing to create the pseudoknot-forming stem (P1(pk)) is mutually exclusive with formation of stem P0a at the base of the bulged stem-loop; as a result, the two structures cannot be present simultaneously. Herein, we use thermodynamic methods to evaluate the ability of individual subdomains of the 3' UTR to adopt a pseudoknotted conformation. We find that an RNA capable of forming only the predicted PK (58 nt; 3' nucleotides 241-185) adopts the P2 stem-loop with little evidence for P1(pk) pairing in 0.1 M KCl and the absence of Mg(2+); as Mg(2+) or 1 M KCl is added, a new thermal unfolding transition is induced and assignable to P1(pk) pairing. The P1(pk) helix is only marginally stable, ΔG(25) ≈ 1.2 ± 0.3 kcal/mol (5.0 mM Mg(2+), 100 mM K(+)), and unfolded at 37°C. Similar findings characterize an RNA 5' extended through the P0b helix only (89 nt; 294-185). In contrast, an RNA capable of forming either the P0a helix or the pseudoknot (97 nt; 301-185) forms no P1(pk) helix. Thermal unfolding simulations are fully consistent with these experimental findings. These data reveal that the PK forms weakly and only when the competing double-hairpin structure cannot form; in the UTR RNA, the double hairpin is the predominant conformer under all solution conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A phylogenetically conserved hairpin-type 3' untranslated region pseudoknot functions in coronavirus RNA replication.

Secondary and tertiary structures in the 3' untranslated region (UTR) of plus-strand RNA viruses have been postulated to function as control elements in RNA replication, transcription, and translation. Here we describe a 54-nucleotide (nt) hairpin-type pseudoknot within the 288-nt 3' UTR of the bovine coronavirus genome and show by mutational analysis of both stems that the pseudoknotted struct...

متن کامل

Development of RT-PCR Using External and Internal Positive Controls Based on 5' Untranslated Region (UTR) for Molecular Detection of Avian Infectious Bronchitis Virus

Background and Aims: Infectious bronchitis virus (IBV) belongs to the group of gamma coronaviruses along with other avian coronaviruses. The disease caused by IBV can appear similar to infectious laryngotracheitis, avian influenza, and velogenic Newcastle disease, which are high priority diseases. The clinical signs can be accompanied by mortalities in broiler chickens and reduced eggshell and ...

متن کامل

Cloning and molecular characterization of TaERF6, a gene encoding a bread wheat ethylene response factor

Ethylene response factor proteins are important for regulating gene expression under different stresses. Different isoforms for ERF have previously isolated from bread wheat (Triticum aestivum L.) and related genera and called from TaERF1 to TaERF5. We isolated, cloned and molecular characterized a novel one based on TdERF1, an isoform in durum wheat (Tri...

متن کامل

Eukaryotic elongation factor 1A interacts with the upstream pseudoknot domain in the 3' untranslated region of tobacco mosaic virus RNA.

The genomic RNA of tobacco mosaic virus (TMV), like that of other positive-strand RNA viruses, acts as a template for both translation and replication. The highly structured 3' untranslated region (UTR) of TMV RNAs plays an important role in both processes; it is not polyadenylated but ends with a tRNA-like structure (TLS) preceded by a conserved upstream pseudoknot domain (UPD). The TLS of tob...

متن کامل

Characterization of cDNA sequence encoding for a novel sodium channel -toxin from the Iranian scorpion Mesobuthus eupeus venom glands

The venoms of Buthidae scorpions are known to contain basic, single-chain protein -toxins consisting of 60-70 amino acid residues that are tightly cross-linked by four disulfide bridges. Total RNA was extracted from the venom glands of scorpion Mesobuthus eupeus collected from the Khuzestan province of Iran and then cDNA was synthesized with the modified oligo (dT) primer and extracted total R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 17 9  شماره 

صفحات  -

تاریخ انتشار 2011